The Dst index underestimates the solar cycle variation of geomagnetic activity

نویسندگان

  • Michael Temerin
  • Xinlin Li
چکیده

It is known that the correction of the Kyoto Dst index for the secular variation of the Earth's internal field produces a discontinuity in the Kyoto Dst index at the end of each year. We show that this secular correction also introduces a significant baseline error to the Kyoto Dst index that leads to an underestimate of the solar cycle variation of geomagnetic activity and of the strength of the ring current as measured by the Kyoto Dst index. Thus, the average value of the Kyoto Dst index would be approximately 13 nT more negative for the active year 2003 compared to quiet years 2006 and 2009 if the Kyoto Dst index properly measured the effects of the ring current and other currents that influence the Dst observatories. Discontinuities in the Kyoto Dst index at the end of each year have an average value of about 5 nT, but the discontinuity at the end of year 2002 was approximately 12 nT, and the discontinuity at the end of year 1982 may have been as large as 20 nT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kalman filter and Neural Network methods for detecting irregular variations of TEC around the time of powerful Mexico (Mw=8.2) earthquake of September 08, 2017

In 98 km SW of Tres Picos in Mexico (15.022°N, 93.899°W, 47.40 km depth) a powerful earthquake of Mw=8.2 took place at 04:49:19 UTC (LT=UTC-05:00) on September 8, 2017. In this study, using three standard, classical and intelligent methods including median, Kalman filter, and Neural Network, respectively, the GPS Total Electron Content (TEC) measurements of three months were surveyed to detect ...

متن کامل

Solar cycle effects in planetary geomagnetic activity Analysis of 36year long OMNI dataset

NSSDC's OMNI dataset, which now spans 1963-1999, contains a collection of hourly means of interplanetary magnetic field (IMF) and solar wind (SW) plasma parameters measured near the Earth's orbit, as well as some auxiliary data. We report a study of solar cycle effects in planetary geomagnetic activity in which 27-day averages of several OMNI parameters are compared with equivalent Kp and Dst a...

متن کامل

Effects of St Patrick’s Day Intervals Geomagnetic Storms on the Accuracy of GNSS Positioning and Total Electron Content over Nigeria

Total electron content (TEC) and GNSS positioning error over two Nigeria GNSS stations (CLBR: Latitude; 4.9503°E, Longitude; 8.3514°N, FUTY: Latitude; 9.3497°E, Longitude; 12.4978°N) were studied during the geomagnetic storms of March 17, 2015 minimum Dst (Disturbed storm time) -223nT and that of March 17, 2013 minimum Dst of -132nT (the St. Patrick’s...

متن کامل

Predicting the occurrence of super-storms

A comparative study of five super-storms (Dst<−300 nT) of the current solar cycle after the launch of SoHO, to identify solar and interplanetary variables that influence the magnitude of resulting geomagnetic storms, is described. Amongst solar variables, the initial speed of a CME is considered the most reliable predictor of the strength of the associated geomagnetic storm because fast mass ej...

متن کامل

Relationships between the AE , ap and Dst indices near solar minimum ( 1974 ) and at solar maximum ( 1979 )

Three-hourly average values of the Dst, AE and ap geomagnetic activity indices have been studied for 1 year's duration near the solar minimum (1974) and also at the solar maximum (1979). In 1979 seven intense geomagnetic storms (Dst <A100 nT) occurred, whereas in 1974 only three were reported. This study reveals: (1) the yearly average of AE is greater in 1974 than in 1979, whereas the inverse ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 120  شماره 

صفحات  -

تاریخ انتشار 2015